

Patent Abstracts

These Patent Abstracts of recently issued patents are intended to provide the minimum information necessary for readers to determine if they are interested in examining the patent in more detail. Complete copies of patents are available for a small fee by writing: U.S. Patent and Trademark Office, Box 9, Washington, D.C. 20231.

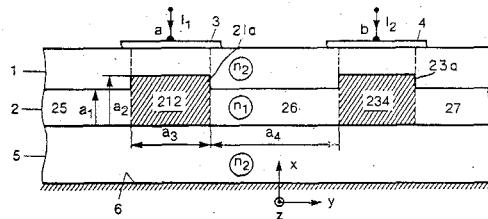
4,647,879

Mar. 3, 1987

Radial/Axial Power Divider/Combiner

Inventor: Yerriah P. Vaddiparty.

Assignee: Ford Aerospace & Communications Corporation.


Filed: July 8, 1985.

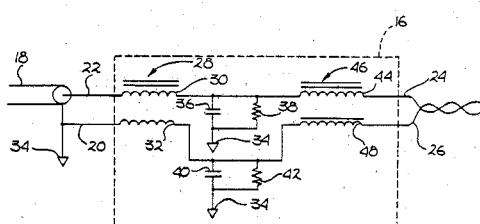
Abstract—An electromagnetic power divider/combiner comprises N radial outputs (31) having equal powers and preferably equal phases, and a single axial output (20). A divider structure (1) and a preferably identical combiner structure (2) are broadside coupled across a dielectric substrate (30) containing on one side the network of N radial outputs (31) and on its other side a set of N equi-spaced stubs (42) which are capacitively coupled through the dielectric substrate (30) to the N radial outputs (31). The divider structure (1) and the combiner structure (2) each comprise a dielectric disk (12, 22, respectively) on which is mounted a set of N radial impedance transformers (14, 24, respectively). Gross axial coupling is determined by the thickness of the dielectric layer (30). Rotating the disks (12, 22) with respect to each other effectuates fine adjustment in the degree of axial coupling.

11 Claims, 3 Drawing Figures

coupler and amplification of the light passing through the first and the third waveguides in the cross coupling state of the directional coupler by feeding a current to the electrodes according to which coupling state is desired.

8 Claims, 9 Drawing Figures

4,717,896


Jan. 5, 1988

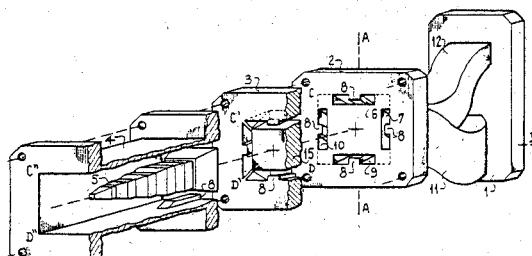
Balun

Inventor: Martin H. Graham.
 Assignee: And Yet, Inc.
 Filed: Mar. 21, 1985.

Abstract — The present invention comprises a balun for intercoupling an at least partially unbalanced line and a substantially balanced line having similar line impedances which is capable of passing differential signals over a wide bandwidth while substantially attenuating any common mode signals. The balun comprises a pair of transformers with bifilar windings, each connected as a choke. Each conductor of the unbalanced line is coupled to a different one of two substantially identical inductances of the first transformer and the other side of each inductance is coupled through the second transformer to a different one of the two conductors of the balanced line. Each of the connections between the two transformers is coupled to ground with a substantially identical capacitance. The capacitance in conjunction with the inductance acts to filter out the common mode signals while allowing the differential mode signals to pass through the balun. The capacitance is coupled to each transmission line by a transformer with sufficient inductance to prevent differential signals in either direction from being shunted to ground. Preferably, a resistor is added in parallel to each of the capacitances to provide for common mode attenuation at the resonant frequency of the system capacitance and inductances.

2 Claims, 7 Drawing Figures

4,717,897


Jan. 5, 1988

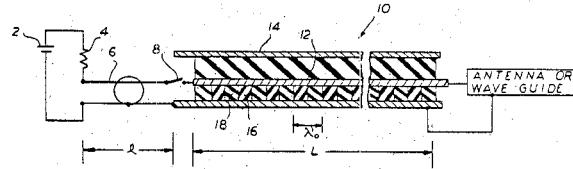
Wide-Band Polarization Diplexer Device and an Antenna Associated with a Radar or a Countermeasure

Inventors: Claude Gehin and Jacky Tourneur.
 Assignee: Thomson CSF.
 Filed: July 11, 1980.

Abstract — A very wide pass band polarization diplexer having a power divider, a transition element and a wave guide containing an impedance adapter, and applicable to all devices requiring the use of a wave guide in which two waves in orthogonal modes propagate.

8 Claims, 4 Drawing Figures

4,719,420


Jan. 12, 1988

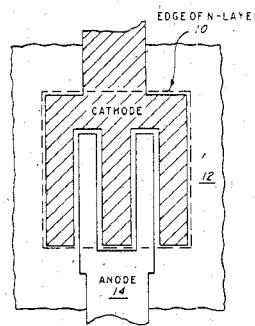
Transmission Line Microwave Generator

Inventors: Hiroyuki Ikezi and Torkil H. Jensen.
 Assignee: GA Technologies Inc.
 Filed: Apr. 14, 1986.

Abstract — The present invention is a device for generating high power microwave pulses using a nonlinear dispersive transmission line connected by a switch means to a source cable means and a high voltage source. The closing of the switch means sends an electrical pulse propagating from the source cable means through the transmission line. The pulse decomposes into a short, high power pulse of microwaves which consists of an array of solitons. The output of the line may be coupled into an antenna, wave guide or other load.

8 Claims, 8 Drawing Figures

4,719,434


Jan. 12, 1988

Varactor Trimming for MMIC's

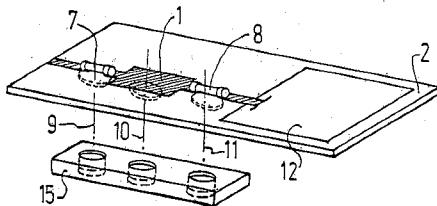
Inventors: Bentley N. Scott and Gailon E. Brehm.
 Assignee: Texas Instruments Incorporated.
 Filed: Oct. 8, 1986.

Abstract — Varactors are incorporated in a monolithic microwave integrated circuit (MMIC) to provide voltage-programmable impedance matching at inputs and/or outputs. This permits the impedance variations normally caused by manufacturing variations in (e.g.) doping or epitaxial thickness to be easily compensated by adjusting the varactor bias, after all major manufacturing steps are completed. Integrated varactors are also used to provide temperature compensation in an MMIC. A temperature-sensitive voltage is generated off-chip and supplied to each on-chip varactor. Each varactor may include a respective voltage-shifting network, so that different varactors implement different capacitance (temperature) functions, to optimally compensate different portions of the MMIC.

8 Claims, 6 Drawing Figures

4,719,435

Jan. 12, 1988


Resonant Microstrip-Line Circuit

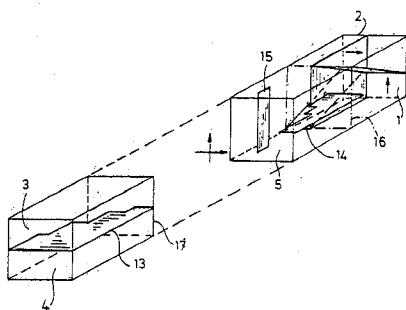
Inventor: Thierry Maitre.
 Assignee: U.S. Philips Corporation.
 Filed: May 5, 1986.

Abstract — The invention relates to a device for the fine adjustment of a resonant microstrip-line formed on an insulating substrate (2), tuned by a varicap diode (7,8) which makes it possible to adjust the shape of the curve

representing the tuning frequency of the strip line as a function of the direct voltage controlling the diode. One or more blind holes are provided in the surface of the substrate opposite the strip line, and a base part (15) with one or more threaded holes, into which cylinders are screwed, is fitted under the strip line. The cylinders are placed facing the blind holes and are aligned with the holes to enable entry into them. The cylinders and the base part are electrically conductive and connected to ground.

7 Claims, 2 Drawing Figures

4,720,691


Jan. 19, 1988

Compact Waveguide Apparatus Acting as a Magic T

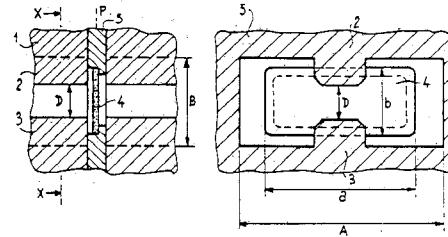
Inventor: Emmanuel Rammés.
Assignee: Agence Spatiale Européenne.
Filed: Sept. 4, 1986.

Abstract—A rectilinear waveguide junction apparatus in which the input and output guides are parallel to the longitudinal axis of the apparatus. This apparatus is characterized in that it takes the form of a parallelepipedic guide the internal volume of which is divided up by metal partitions which form two parallel input guides, two parallel output guides and a main intermediate guide of same section as the parallelepipedic guide. This apparatus is used in very high frequency circuits, for example the supply circuits for satellite or radar antennas.

5 Claims, 10 Drawing Figures

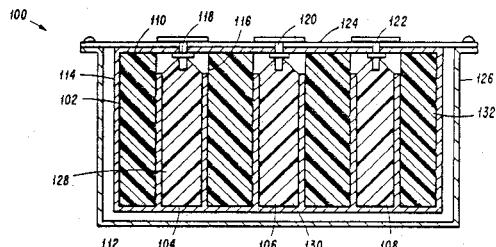
4,720,693

Jan. 19, 1988


Ridged Rectangular Waveguide Provided with a Sealed Window

Inventor: Jacques Tikes.
Assignee: Thomson-CSF.
Filed: Dec. 30, 1985.

Abstract—A thin waveguide window having a broad band of operating frequencies is composed of a metallic frame provided with an opening and a leak-tight closure plate of dielectric material. The frame permits a reduction in dimensions of the plate, with the result that any spurious frequencies introduced by the plate are rejected from the operating frequency band. By giving the plate an oblong shape, it is possible to balance its inductive components by

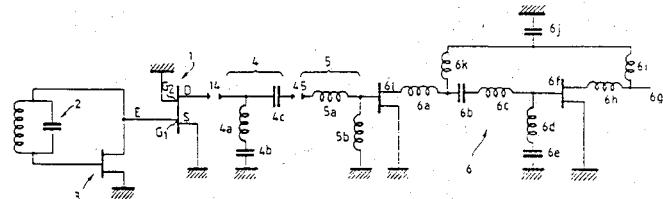

means of its capacitive components at the mid-band frequency. A matching transformer formed by the ridges which are more closely spaced in the vicinity of the window than in the remainder of the waveguide permits matching throughout the frequency band.

8 Claims, 14 Drawing Figures

holes. The placement of the varactor in such a manner reduces the interference caused by the varactor in the interresonator coupling. A new apparatus for positioning the varactor within the resonator hole is disclosed and basically includes a conductive rod which at its top end receives the varactor.

5 Claims, 4 Drawing Figures

4,723,113


Feb. 2, 1988

Very High Frequency Harmonic Generator

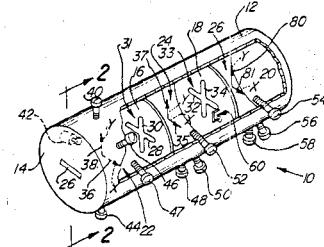
Inventor: Jean-Félicien Marcoux.
Assignee: Enertec.
Filed: Sept. 3, 1986.

Abstract—A very high frequency harmonic generator utilizes a type III-V (e.g. GaAs) FET. An input signal is applied to the gate of the FET at a sufficient level to induce non-linear functioning of the FET. This causes an output signal to appear between the source and drain having frequency components of at least the tenth harmonic of the input signal. The device is particularly applicable to the generation of microwave signals.

10 Claims, 8 Drawing Figures

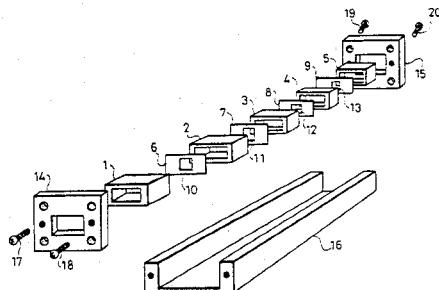
4,721,933

Jan. 26, 1988


Dual-Mode Waveguide Filter Employing Coupling Element for Asymmetric Response

Inventors: Craig Schwartz, Louis Hendrick, and Joseph Elliott.
Assignee: Hughes Aircraft Company.
Filed: Sept. 2, 1986.

Abstract—A dual-mode circular-type waveguide filter (10) has a cylindrical waveguide body (12) separated by septums (16, 18) into a plurality of resonant waveguide cavities (22, 24, 26). Mutually orthogonal electromagnetic fields (37, 81) in adjacent cavities (24, 26) are electromagnetically coupled with each other by an internal coupling element (60) which is mounted on one of the septums (18) and extends into the adjacent cavities. The coupling element


comprises an elongate, conductive wire which includes a first portion (62) extending into one of the cavities and forming a magnetic loop, and a second portion (64) extending into the adjacent cavity and forming an electric probe. The coupling element provides an asymmetrical stopband pole (72a) in the frequency response (70) of the filter.

15 Claims, 7 Drawing Figures

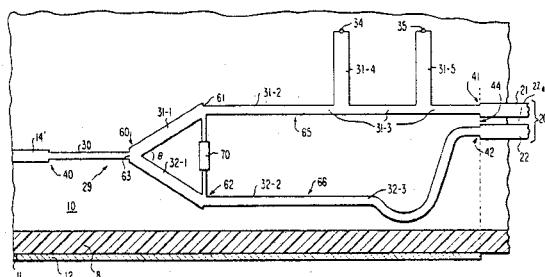
opposed to each induction window. The waveguides and the shunt inductor plates are alternately arranged in close contact state, and the center frequency of the filter scarcely deviates.

2 Claims, 12 Drawing Figures

4,725,792

Feb. 16, 1988

Wide-Band Balun Realized by Equal-Power Divider and Short-Circuit Stubs


Inventor: Ross W. Lampe, Jr.

Assignee: RCA Corporation.

Filed: Mar. 28, 1986.

Abstract—A balun comprises a one-to-two, equal-power, matched power divider having branch transmission lines whose lengths differ by 1/2 wavelength at a design frequency. The shorter of these two branch transmission lines has two 1/4 wavelength long, shorted stub transmission lines branching therefrom 1/4 wavelength apart.

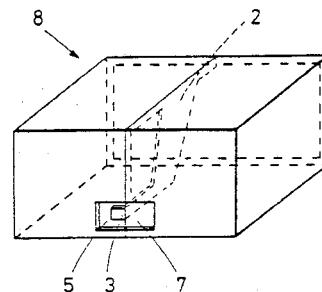
10 Claims, 3 Drawing Figures

4,725,793

Feb. 16, 1988

Waveguide-Microstrip Line Converter

Inventor: Sadao Igarashi.


Assignee: Alps Electric Co., Ltd.

Filed: Sept. 25, 1986.

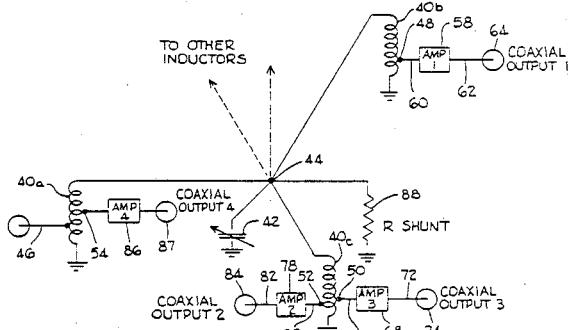
Abstract—A waveguide-microstrip line converter for mode conversion in transmitting signals from a waveguide to a microstrip line or in the reverse, which comprises a dielectric body, a probe formed integrally with and within the dielectric body, and a conductive layer formed over the surface of the

dielectric body excluding a surface to be brought into contact with a waveguide and an area surrounding the connecting part of the probe. The conductive layer is formed over the entire surface of the dielectric body, and then part of the conductive layer is removed by etching to provide the uncoated surface to be brought into contact with the waveguide and the probe. Thus the probe is continuous with the conductive layer and is an integral part of the dielectric body, so that the performance of the probe is unaffected by vibration and the high frequency resistance across the short-circuit waveguide is reduced to reduce signal transmission loss.

1 Claim, 4 Drawing Figures

4,725,794

Feb. 16, 1988


Receiver Multicoupler Using No-Loss Signal Splitter

Inventor: Daniel A. Barczys.

Filed: June 24, 1987.

Abstract—A receiver multicoupler having multiple, isolated outputs generated from a single input comprising a no loss signal splitting network connected to the input having insignificant power absorption and being in the form of parallel tuned circuits providing multiple voltage outputs from a single input and a plurality of very high input resistance voltage amplifiers, each of the amplifiers having an input connected to the signal splitting network, and each of the amplifiers acting as an impedance transformation device and supplying isolation.

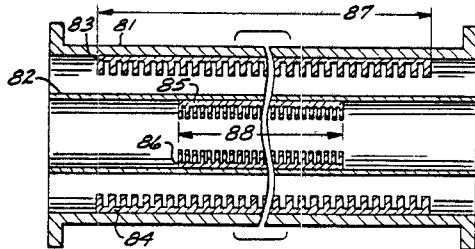
11 Claims, 7 Drawing Figures

4,725,795

Feb. 16, 1988

structure is particularly well suited to such applications as circular polarizers, quarter wave plates or polarization rotating half-wave plates.

Corrugated Ridge Waveguide Phase Shifting Structure


Inventors: James S. Ajioka, Robert T. Clark, and Dean C. Quick.

Assignee: Hughes Aircraft Co.

Filed: Aug. 19, 1985.

Abstract—A differential phase shifting structure is disclosed, employing corrugated ridges in square or round waveguides or in coaxial lines operating in the TE_{11} mode. The structure provides a substantially constant differential phase shift between two waves polarized orthogonally to each other. The corrugations in the ridge provide a series inductance which can be optimized with the shunt capacitance of the ridge to provide a characteristic impedance matching that of the unloaded structure. The corrugated ridges provide increased differential phase shift per unit length. The differential phase shifting

14 Claims, 14 Drawing Figures

